If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4r^2-94r+345=0
a = 4; b = -94; c = +345;
Δ = b2-4ac
Δ = -942-4·4·345
Δ = 3316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3316}=\sqrt{4*829}=\sqrt{4}*\sqrt{829}=2\sqrt{829}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-94)-2\sqrt{829}}{2*4}=\frac{94-2\sqrt{829}}{8} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-94)+2\sqrt{829}}{2*4}=\frac{94+2\sqrt{829}}{8} $
| j^2=121 | | 18-4w=10 | | (7/3)(x+(9/28))=20 | | 9(3+4w)=6w–3(7–8w) | | -5x^2-530=90x | | q^2=-79 | | 3x-51=39 | | 11=4k-5 | | Y=2x+3.4x-2 | | 5+4x=-2 | | (n-4)(n+2)=-9 | | 7f+7(f–2)=168 | | t^2+29=-44 | | 2.8+3.12x+1=16.6 | | 7f+7(f+2)=168 | | 6n-2(3+8n)=-6(1+4n) | | Y+2=x+9 | | 5(n-1|5)=1|4-16n | | y^2-92=0 | | 4=4u-8 | | 7f+7(2–f)=168 | | 4+4c=12 | | -41x-13=77+90 | | n^2+0=0 | | 2g-12=4 | | -5^2-530-90x=0 | | 2g−12=4 | | u^2=32 | | (7)/(8)x-22=27 | | -14+4(3x+5)=7 | | 12=2x-40 | | -6(8-3n)=30+5n |